博客
关于我
chapter.数据清洗1.2
阅读量:517 次
发布时间:2019-03-07

本文共 2318 字,大约阅读时间需要 7 分钟。

1.3填充缺失值

当数据量不够或者其他部分信息很重要的时候,就不能删除数据了,这时需要对缺失值进行填充,通过fillna方法可以将缺失值替换为常数值。
例:

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)

在这里插入图片描述

使用fillna方法填充

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna(0)#全部填充为0

在这里插入图片描述

当然在fillna中传入字典结构数据,可以针对不同列填充不同的值,fillna返回的是新对象,不会对原数据进行修改,可通过inplace就地进行修改。
例:

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna({   1:6,3:0})

在这里插入图片描述

还可以通过平均值来作为填充数

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame(np.arange(12).reshape(3,4))display(data)#对数据进行处理,即创建一些为缺失值的数据data.loc[1,:]=np.nandata[2]=np.nandisplay(data)data.fillna(method='ffill')

在这里插入图片描述

2.移除重复数据
在爬取的数据中往往会出现重复数据,对于重复数据保留一份即可,其余可以移除,在DataFrame数据中,通过duplicated方法判断各行是否有重复数据。

data=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})
import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.duplicated()

在这里插入图片描述

通过drop_duplicates方法,可以删除多余的重复项

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.drop_duplicates()

在这里插入图片描述

很显然这种情况下当每行的每个字段都相同时才会判断出为重复,这时可以通过指定部分作为判断重复项的依据。

import pandas as pdimport numpy as npfrom pandas import Series,DataFramefrom IPython.display import displaydata=DataFrame({       '姓名':['小敏','晓明','小强','小红','晓明'],    '年龄':['女','男','男','女','男'],    '地址':['北京','南京','上海','广州','南京']})display(data)data.drop_duplicates('年龄')

在这里插入图片描述

从结果可以看出,保留的数据为第一次出现的组合。传入keep=‘last’可以保留最后一个。

转载地址:http://hrynz.baihongyu.com/

你可能感兴趣的文章
Navicat报错connection is being used
查看>>
Navicat报错:1045-Access denied for user root@localhost(using passwordYES)
查看>>
Navicat控制mysql用户权限
查看>>
navicat操作mysql中某一张表后, 读表时一直显示正在载入,卡死不动,无法操作
查看>>
Navicat连接mysql 2003 - Can't connect to MySQL server on ' '(10038)
查看>>
Navicat连接mysql数据库中出现的所有问题解决方案(全)
查看>>
Navicat连接Oracle出现Oracle library is not loaded的解决方法
查看>>
Navicat连接Oracle数据库以及Oracle library is not loaded的解决方法
查看>>
Navicat连接sqlserver提示:未发现数据源名并且未指定默认驱动程序
查看>>
navicat连接远程mysql数据库
查看>>
Navicat通过存储过程批量插入mysql数据
查看>>
Navicat(数据库可视化操作软件)安装、配置、测试
查看>>
navigationController
查看>>
NB-IOT使用LWM2M移动onenet基础通信套件对接之APN设置
查看>>
NBear简介与使用图解
查看>>
Vue过滤器_使用过滤器进行数据格式化操作---vue工作笔记0015
查看>>
Ncast盈可视 高清智能录播系统 IPSetup.php信息泄露+RCE漏洞复现(CVE-2024-0305)
查看>>
NCNN中的模型量化解决方案:源码阅读和原理解析
查看>>
NCNN源码学习(1):Mat详解
查看>>
nc命令详解
查看>>